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Hunt (1982) and Friedlander (1960a, b )  used dimensional analysis to derive expres- 
sions for the steady-state particle-size distribution in aerosols and hydrosols. Their 
results were supported by the Monte Carlo simulation of a non-interacting coagulating 
population of suspended spherical particles developed by Pearson, Valioulis & List 
(1984). Here the realism of the Monte Carlo simulation is improved by accounting 
for the modification to the coagulation rate caused by van der Waals’, electrostatic 
and hydrodynamic forces acting between particles. The results indicate that the 
major hypothesis underlying the dimensional reasoning, that is, collisions between 
particles of similar size are most important in determining the shape of the particle 
size distribution, is valid only for shear-induced coagulation. It is shown that 
dimensional analysis cannot, in general, be used to predict equilibrium particle-size 
distributions, mainly because of the strong dependence of the interparticle force on 
the absolute and relative size of the interacting particles. 

1. The quasi-stationary particle-size distribution 
Reasoning on dimensional grounds, Friedlander (1960a, 6) and Hunt (1982) 

derived expressions for the steady-state evolution of the size distribution n(v)  of 
coagulating particles. n(w) is defined by 

where dN is the number of particles with volumes in the range v to v+dv per unit 
volume of fluid, so that n(v) is the number density of particles in v-space. 

The underlying idea was inspired from Kolmogorov’s equilibrium theory of 
turbulence (see Monin & Yaglom 1975). Friedlander assumed that a state of dynamic 
equilibrium would exist between production, coagulation and loss through sedimen- 
tation of particles in atmospheric aerosols. He hoped that there exist size ranges where 
only one of the coagulation mechanisms listed in table 1 is important, in which case 
the size distribution in some subrange would depend only on the particle volume v, 
the constant particle volume flux E ,  per unit volume of fluid, through the size 
distribution, and a dimensional parameter (KB,  Ksh = G or Ksh = ( E / v ) :  and Kds)  
characterizing the dominant coagulation mechanism (see table 1). Hunt extended 
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Dimensional 
Collision function /3 Source parameter Mechanism 

Smoluchowski kT 
(1916) K B = F  Brownian motion 

3,u rirj 

Laminar shear 

Isotropic turbulent 
shear 

Smoluchowski G 
(1917) 

Saffman and 
Turner (1956) 

t Corrected from original (see Pearson et a1.1984) 

TABLE 1. Collision functions and characteristic dimensional parameters for various particle 
collision mechanisms. Values of /l are for collision mechanisms acting individually with no 
hydrodynamic or other interparticle forces. k = Boltzmann constant, T = absolute temperature, 
ri = particle radius, p = coefficient of fluid viscosity, D, = particle diffusivity, G = laminar shear 
rate, B = viscous-dissipation rate per unit mass, v = kinematic viscosity of fluid ( = ,u/pf), pf = fluid 
density, pp = particle density, g = acceleration due to gravity. 

Friedlander’s ideas to hydrosols and included a shearing- and differential-settling- 
dominated subrange. His expressions are 

where aB, ash and ads are dimensionless constants. 
Jeffrey (1981) offered a new derivation of Hunt’s results which clarifies the 

assumptions involved in the dimensional arguments. The change with time of the 
particle-size distribution n(v)  is given by the general dynamic equation 

-- an(’) - l ( v )  +; jov P ( d ,  v - v ’ )  n(d)  n(v - v’)  dv’ 
at 

- jOm p(v,  v ’ )  n(v) n(v’) dv’ + w(v)  ~ an(v) ( 1  5) 
a x  

where P(v,  v’) is the collision function which represents the geometry and dynamics 
of the collision mechanism, l (v )  is a source of particles (through condensation, for 
example) and w(v) an(v)/az is a particle sink resulting from particles sedimenting in 
the z-direction a t  their Stokes settling velocity w(v) .  For homogeneous particle 
systems and for size ranges where the source term is negligible, the steady-state form 
of (1.5) is ijov p(d, v-v’) n (d)  n(v-v’) dv’ = P p(v,  w‘)n(v) n(v’) dv’. (1.6) 

The integral on the left-hand side of (1.6) represents the rate of gain of particles of 
volume v by coagulation of pairs of smaller particles, conserving volume; the integral 
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on the right-hand side represents the flux of particles out of the size range (v, v + dv)  
due to their coagulation with particles of all sizes. Derivation of Hunt’s expressions 
proceeds (Jeffrey 1981) under the assumption that collisions between particles of 
similar size contribute mostly to the r.h.s. term of (1.6). Jeffrey approximates 

JOm P ( w ,  v’) n(v )  n(v’) dv’ z ~ ( I I ,  v)  nz (v )  11, 

which, if multiplied by v 2  to convert from number-density flux to volume flux, is 
precisely the flux E of particle volume through the size space. The general expression 
then follows : 

n(v )  - (‘Yv-2. (1.8) 

The collision function P(v,v‘) is the probability that two particles of sizes v and 
II’ will collide in unit time. This probability is equal to the common volume two 
particles sweep per unit time under the influence of one or more physical mechanisms 
in a unit volume of fluid. If non-interference of the different coagulation mechanisms 
is assumed, then subranges exist where a sole mechanism dominates and p(v ,  v’) is 
given by the expressions listed in table 1 ; from (1.8) Hunt’s expressions then follow. 

It is clear that  two assumptions are needed for the quasi-stationary distributions 
to be valid: 

1.  collisions between particles of similar size are more important, or, equivalently, 
that there in non-interference of particles of a size characteristic of one collision 

~, mechanism with those of another; 
2. an equilibrium size distribution is established. 

The latter assumption can be justified from the regularities observed in the size 
distributions of both atmospheric aerosols (Friedlander 1960 a ,  b )  and hydrosols 
(Faisst 1976). 

2. Verification of the theory 
Hunt (1982) studied the coagulation of solid particles (three types of small clay 

particles and finely divided crystalline silica) in artificial seawater in the laminar shear 
generated between two rotating coaxial cylinders when the outer one was rotated. 
Some of his results support the predictions of the theory for Brownian-motion- and 
laminar-shear-induced coagulation, but none of the steady-state size distributions 
attained in the experiments had size regimes exhibiting the power-law behaviour of 
both the coagulation mechanisms. Settling of particles caused Hunt’s systems to be 
in a quasi-dynamic steady state : the size distributions obtained were decreasing in 
magnitude while remaining similar in shape as the time progressed. Also, the 
dimensionless parameters aB and ash appearing in (1.2) and (1.3) were not the same 
for the different suspensions studied. Hunt attributed this variation to  properties of 
the suspensions which modified the coagulation rate. 

I n  Part 1 (Pearson, Valioulis & List 1984) we developed a method for Monte Carlo 
simulation of the evolution of a coagulating suspension. Spherical particles move in 
a cubical box or ‘control’ volume under the influence of Brownian motion and/or 
fluid shear. Hydrodynamic forces and colloidal forces are ignored so that particles 
move on straight paths. Particles in suspension have unit volume vo, or integral 
multiples vi = iv,  of the unit volume. All lengths and times in the computer model 
are expressed as multiples of the radius of the unit particle and the time step At, both 
set equal to unity in the simulation. Colliding particles coagulate to form a larger, 
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still-spherical particle, conserving volume. The model employs periodic boundary 
conditions which allow an infinite homogeneous system to be simulated approximately 
by a finite volume. A system in dynamic equilibrium is successfully modelled by using 
the following technique. A fixed number N ,  of particles of unit volume are added to 
the population a t  random each time step, and any particles that  have reached a preset 
maximum volume v,,, are removed. The addition of small particles is a crude 
representation of the particle volume flux E per unit volume of fluid, where 
E = N,v,/ V A t ,  into the size range from coagulation of particles smaller than wo. The 
removal of particles larger than vm,, represents the physical loss of particles from 
the box by sedimentation or vertical concentration gradients. This procedure is 
consistent with the first hypothesis of the theory and is justified a posteriori by the 
success of the simulation on reproducing Hunt’s (1982) dimensional results for 
Brownian motion, laminar shear- and isotropic turbulent shear-induced coagulation. 
In  Part 1 we concluded that the final steady-state size distributions attained in our 
computer ‘experiments ’ were insensitive to the size range covered by the simulation. 
However, as in Hunt’s experiments, no one single simulation gave a size distribution 
having both Brownian-motion- and shear-coagulation-dominated regimes. 

Our computer program, operating in a different mode, allows also the direct 
measurement of the collision function. On collision, particles are not coagulated but 
one of them simply repositioned so as to avoid repeated collisions of the same particle 
pair. I n  this manner the analytic estimates for the collision function for laminar shear 
and isotropic turbulent shear were reproduced. 

The present study is a sequel to  the Part  1, and is an attempt to improve the realism 
of the results contained therein by accounting for the modifications to the coagulation 
rate caused by hydrodynamic, van der Waals and electrostatic forces acting between 
the approaching particles. Coagulation induced by differential sedimentation is also 
modelled, and the validity of Hunt’s (1982) dimensional arguments is reexamined in 
the light of the results of the simulations performed in this study. 

3. Brownian diffusion 
3.1. Particle interactions 

When forces act between two diffusing particles their collision rate, per unit volume 

(3.1) 
of fluid, becomes 2 kT ( r 1 + r 2 ) 2  

3 P r1r2 
EB(rl’  r 2 ) >  

_ _  

where EB(rl,  r 2 )  is a collision efficiency or modification to the collision rate, resulting 
from the interacting forces. Valioulis & List (1983), following Spielman’s (1970) 
method, computed the collision efficiency E,  for two spherical particles in Brownian 
diffusion assuming Stokes’ flow and accounting for van der Waals’ and electrostatic 
forces. Using Einstein’s (1926) ingenious argument, they assumed a hypothetical 
equilibrium in an unbounded system of particles of two sizes, where the mean radial 
density flux of particles 2 relative to particle 1 due to Brownian motion is balanced 
by an advective flux which arises from an arbitrary conservative force F acting 
between the particles. Considering only binary particle encounters and neglecting 
inertial effects so that the two fluxes become superposable (Batchelor 1976), i t  is then 
assumed that the expression for the relative particle diffusivity derived, D = bkT,  
is valid even when the force F is removed. The relative mobility b can be computed 
from the exact solution of Stokes’ equations for two spheres moving along their line 
of centres obtained by Stimson & Jeffrey (1926). Valioulis & List (1983) solved the 
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FIGURE 1. Collision efficiencies of particles with various relative sizes and for various values of AIkT 
when van der Waals and hydrodynamic forces operate. The collision efficiencies were computed 
assuming that Air, = 0.1, where h is the London wavelength, typically about 0.1 pm. 

diffusion equation numerically, including the van der Waals’ attractive force as 
given by the expression of Schenkel & Kitchener (1960) which includes microwave 
retardation effects, important for solid particles in water. Figure 1 illustrates the 
functional dependence of the collision efficiency on the relative size of the interacting 
particles for several values of the Hamaker constant A .  It is seen that the combined 
action of hydrodynamic and van der Waals’ forces reduces the collision rate, the effect 
being more pronounced for particles of similar size. For r2 /r1  = 1 the collision 
efficiencies computed are slightly smaller than the ones obtained by Spielman (1970) 
and Honig, Roebersen & Wiersma (1971), who did not account for retardation effects. 

Valioulis & List (1983) also incorporated double-layer forces in their computations, 
assuming that the two particles carry the same negative charge - since most dispersed 
particles in natural waters are negatively charged - and that the particle surface 
charge density rather than their surface potential remains constant during the 
Brownian encounter. The latter assumption is justified by the arguments of Frens 
& Overbeek (1971)’ who showed that the timescale of the Brownian interaction of 
two particles (of the order of lO-’s) is too short for electrochemical equilibrium to 
be restored. The salient feature of the results is that two coagulation regimes can be 
identified: the ‘rapid’ coagulation regime, where the particle behaviour is not 
influenced by electrostatic interactions, and the ‘slow ’ coagulation regime, where the 
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suspension is stable for all practical purposes. The transition from a kinetically stable 
(no significant change in the number density of the particles during the observation 
time) to an unstable state of the dispersion is abrupt, so a quantitative criterion of 
coagulation (or stability) can exist. Using the results of Honig & Mull (1971), Valioulis 
& List (1983) obtained the following criterion for the onset of coagulation for 
suspended particles in water (assumed to be equivalent to a monovalent symmetrical 
electrolyte with the same ionic strength) a t  20 “C: 

valid for ACT < 2 x where CT is the particle surface charge density (in C/cm2), 
@ the ionic strength of electrolyte (in mol/litre) and A the Hamaker constant (in J). 

3.2. Computer simulation 

For Brownian-induced coagulation in the presence of van der Waals’ forces and 
hydrodynamic interactions, the functional dependence of the collision efficiency on 
the relative size of the interacting particles (see figure 1 )  suggests that  the first 
assumption in the equilibrium theory is invalid. 

The computer simulation of Part 1 is used to  investigate the dependence of the 
steady-state size distribution on the externally imposed conditions - in particular, 
the particle-size range covered in any computer run. The collision function /3 depends 
only on the relative size of the interacting particles ; the collision efficiency E, depends 
both on the relative and the absolute (when retardation effects are included) size of 
the interacting particles. The collision rate of two particles with radii rl and r,, per 
unit time and per volume V of fluid, under the influence of hydrodynamic and van 
der Waals’ forces, can be set equal to the collision rate of two non-interacting particles 
with radii t, and t,, per volume V, of fluid and per unit time: 

(3.2) 
2 kT (rl + r,), EB - 2 kT (tl + t,), 1 
3 p r 1 r 2  V 3 p tlt, V,’ 

- _ _ _ _ _ _ _  - _ _  

Solving equation (3.2) for t,/tl, we obtain 

where we have put V = El V,; El is the collision efficiency for r2 / r1  = 1 and is 
introduced so that (3.2) has real roots. For r 2 / r 1  = 1 (3.3) gives t,/tl = 1 .  Thus the 
collision rate in monodisperse non-interacting system of particles, per volume El V, 
of fluid, is equal to  the collision rate, per volume V of fluid, in a system of the same 
number of particles of equal size between which hydrodynamic and van der Waals’ 
forces act (hereinafter referred to as the realistic system). Equation (3.3) maps the 
realistic system of particles of all sizes onto a non-interacting particle system; to  
every particle with radius r (r-particle) in the realistic system corresponds a particle 
with radius t (t-particle) in the non-interacting system. When two t-particles collide 
the corresponding r-particles are coalesced to form a new r-particle, conserving 
volume, and the radius of the new t-particle is calculated from (3.3). The method 
for generating displacements a t  each step and updating their positions is described 
in detail in Part 1 .  The initial volume concentration of suspended particles used in 
the simulations ranges from 0.1 to 1 yo ; such a high concentration is necessary in order 
to achieve results in reasonable computation times. 

Figure 2 shows the time development of the normalized particle-size distribution 
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FIGURE 2. Evolution of the normalized size distribution for Brownian motion; AIkT = 1 ,  
h l r ,  = 0.1, Do = 0.222, E = 1.4 x lo-’, i,,, = 125. 

of a population of particles undergoing Brownian-induced coagulation. The suspension 
is initially monodisperse and has a volume concentration of q5 = 0.57 yo. The curves 
shown are smoothed approximations to  ensemble averages of actual data points from 
five simulation runs. The data in the small size range attain a slope of about -i once 
particles tenfold in volume are created. The level of the distribution declines then 
gradually until, after about 1200 time steps, a dynamic equilibrium is reached; this 
occurs when the first large particle is physically removed from the ‘ control ’ volume. 

Dimensional analysis suggests that  the value of the dimensionless group Do At/rt 
should remain constant when the results are interpreted in the physical context. 
To illustrate, consider an aerosol particle with radius 1 pm and diffusivity 
1.3 x lo-’ cm2/s. Since Do = 0.222, ro = 1 and At = 1 in the simulation, for a 
micron-sized particle 1 s of real time corresponds to about 58 time steps. Thus, for 
the volume concentration used here, the growth of the population of suspended 
particles examined is very rapid. 

The series of simulation runs shown in figures 3 and 4 illustrate the effect that the 
ratio i,,, = ZI,,~/ZI~ (i.e. the size range covered by the simulation) has on the final 
steady-state size distributions ; vo is the unit particle volume and v,,, the volume 
of the largest particle allowed to remain in the system. All simulation runs were 
started with a monodisperse population of particles. In  both figures three runs with 
V , , ~ / W ~  = 27, 125 and 512 are shown. For the simulations in figure 3 the Hamaker 
group A/kT is 1 ,  and for those in figure 4 i t  is 0.01 (it thus covers the range of Hamaker 
constants found in natural waters). The data points shown are averaged over 2000 
time steps after the first large particle was lost from the ‘control’ volume. This is 
necessary because of the small number of particles involved in the simulation. The 
data points, when non-dimensionalized according to (1.2) and plotted logarithmically 
against particle volume (non-dimensionalized with the unit particle volume), collapse 
onto a slope of -$. The level of the distributions as determined by the intercept of 
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FIGURE 4. Comparison of the steady-state non-dimensional size distribution for Brownian motion 
for different i,,, for AIkT = 0.01 and h/r ,  = 0.1; realistic system; Do = 0.222, E = 5.7 x lo-': 0, 
i,,, = 27, 4 = 0.006; A, 125, 0.005; +,  512, 0.006. 

the best-fit line of slope -: with the axis v/v, is considerably above the simulation 
runs of Part  1. This is shown in figure 5 ,  where the results of two computer simulations 
a t  different AIkT are compared with the non-interacting system of Part 1 ,  all other 
parameters being the same. 

At the upper end of the size range the results of all three simulation runs in both 
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FIQURE 5. Comparison of the steady-state non-dimensional size distribution for a non-interacting 
system and for two realistic suspensions with different values of AIkT; Do = 0.222, E = 5.7 x 
i,,, = 125: 0,  non-interacting system, q5 = 0.003; A, realistic system with AIkT = 1 ,  A l r ,  = 0.1, 
q5 = 0.004; +, realistic system with AIkT = 0.01, h / r ,  = 0.1, q5 = 0.005. 

figures 3 and 4 are statistically identical. It seems that the constant addition of unit 
particles, which clearly cannot represent properly the creation of unit particles by 
coagulation of smaller ones, covers the influence of w,,, on the smallest particles of 
the simulation. For the largest part of the size range a constant decline in level of 
the size distribution with increasing w,,,/w,, occurs in both figures 3 and 4. Contrary 
to the ‘non-interacting’ particle system of Part 1,  the size range influences the final 
steady-state size distribution. 

4. Laminar shear 
Adler (1981) used the rigorous theory for the hydrodynamic interaction of two 

unequal spheres in simple shear flow (Batchelor & Green 1972; Arp & Mason 1976) 
to correct Smoluchowski’s (191 7)  expression for the collision rate of spherical particles 
with radii rl and r2 and number concentrations Nl and N ,  per unit volume of fluid. 
The collision rate is 

f N l  N2 (rl + r2 l3 GEsh(rl ~2 1 (4.1) 

where Esh(rl, r 2 )  is Adler’s (1981) correction factor (or collision efficiency). In 
Smoluchowski’s rectilinear approach, geometrical exclusion determines the collision 
cross-section of the two particles. Hydrodynamic forces induce curvature in the 
particle trajectories which can be’ open or closed. Between the two kinds of 
trajectories a separation surface exists whose cross-section at infinite interparticle 
distance defines a ‘curvilinear’ collision cross-section. In  the absence of other forces 
the cross-section of the separation surface tends to zero a t  large distances (Batchelor 
& Green 1972), reflecting the singular behaviour of the interparticle hydrodynamic 
force in Stokes flow a t  particle contact. When, in addition, van der Waals’ or other 
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FIGURE 6. Collision efficiencies of spherical particles in simple shear (Adler 1981). 

external forces act between the particles, a non-zero curvilinear cross-section may 
exist. 

The correction Esh(rl, r2) to the rectilinear collision rate is equivalent to defining 
a curvilinear collision cross-section a2 : 

For two unequal spherical particles in simple shear flow in the presence of van der 
Waals’ forces ESh(rl,  r2)  is a function of the relative size of the interacting particles 
and the dimensionless parameter 

(4.3) 

where A is the Hamaker constant, G the rate of strain and r2 the radius of the large 
particle. H represents the relative strength of the attractive van der Waals’ forces 
and the shear. The collision efficiency Esh(rl ,r2)  is plotted in figure 6 against the 
relative size of the interacting particles for various values of H .  Adler (1981) reports 
corrections to the rectilinear collision rate for four different relative particle sizes 
r2/r1 = 1 ,  2, 5, 10 and for H ranging from to lop5. Interpolation was used to 
obtain the collision rate corrections for intermediate values of r2 / r1 .  Figure 6 indicates 
that homocoagulation (coagulation between particles of similar size) is favoured over 
heterocoagulation. The first requirement for the existence of a quasi-stationary size 
distribution in a coagulating system of particles is thus fulfilled. 

The computer simulation model of Part 1 is used to study the evolution of the size 
distribution of a coagulating population of particles subjected to laminar shear and 
accounting for van der Waals’ forces. It is assumed that the suspensions is 
destabilized so that double-layer forces are negligible. The correction to the 
curvilinear collision cross-section obtained from (4.2) is used in the simulation to 
check for particle collisions. 



10-3 

104 

Monte Carlo simulation of coagulation. Part 2 397 

1 

lo-’ 

0.5 

10-2 

FIGURE 7. Evolution of the normalized size distribution for laminar shear; H = G = 1, 
E = 7.1 x i,,, = 125, Ninitial = 400. 

Figure 7 illustrates the evolution in time of an initially monodisperse suspension 
of particles with an initial volume concentration of 0.57% colliding under the 
influence of simple shear. The data of six simulation runs with identical initial con- 
ditions are averaged and normalized according to the dimensional arguments, (1.3), 
to give the plotted curves. The temporal development of.the size distribution follows 
a pattern similar to the Brownian system; that is, the upper portion of the size 
spectrum attains a slope of - 2 once a range of about one decade in volume is reached. 
Notice that the size distribution approaches its steady-state value long before a 
dynamic equilibrium is attained. If wo represents an aerosol particle with radius 1 pm, 
then the strain rate used corresponds to G = 125 s-l, and 125 time steps correspond 
to 1 s of real time ; if uo is set equivalent to a micron-sized hydrosol part’icle, G = 2 s-l, 
and 2 time steps correspond to 0.1 s of real time. The difference in the physical 
interpretation of the results of the simulation in aerosol and aqueous systems is due 
to the dependence of the dimensionless parameter H on viscosity. 

Figure 8 is a comparison of the steady-state size distribution of three coagulating 
populations of particles when the maximum size wmax, of a particle allowed to stay 
in the ‘control’ volume varies. For the three sets of data shown H = 10P and 
wm,,/wo = 27, 125 and 512. The numerical results, non-dimensionalized according to 
(1.3) and averaged over 2000 time steps, collapse onto a slope of -2 .  The three 
populations of particles are statistically identical : the size range does not influence 
the final steady-state size distribution. 

The effect of the hydrodynamic interactions in decreasing the coagulation rate is 
illustrated in figure 9. The final steady-state size distribution of two populations of 
particles a t  H = and lop4 are compared with the non-interacting system of Part 
1 .  The size distribution shifts upwards as the strength of the shear (i.e. rate of strain) 
decreases. Hydrodynamic and van der Waals forces merely change the value of the 
‘constant’ ash in (1.3). According to Zeichner & Schowalter (1977), Esh(rl ,r2)  is 
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FIGURE 8. Comparison of the steady-state normalized size distribution for laminar shear for 
different values of i,,,; H = lo-', G = 1, E = 7.1 x A, i,,, = 27, q5 = 0.009; +, 125, 0.010; 
0, 512, 0.011. 

V I U O  

FIQURE 9. Comparison of the steady-state normalized distribution for laminar shear for a 
non-interacting system and for two realistic systems with different values of H = A/144npr3G: 0, 
non-interacting system, G = 1, E = 1.1 x i,,, = 125, 4 = 0.037; +, realistic system, 
H = lo-', G = 1, E = 7.1 x G = 1, 
E = 1.4 x 

i,,, = 125, q5 = 0.010; A, realistic system, H = 
i,,, = 125, q5 = 0.027. 
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proportional to Ha, where a = 0.23, and therefore the collision function /3 scales as 
G-i(l-a), and hence n ( v )  is proportional to w - ~ + : ~ .  Hunt’s (1982) dimensional arguments 
are then modified, and from (1.8) we obtain 

(4.4) 

for laminar-shear-induced coagulation when hydrodynamic and van der Waals’ 
interactions are taken into consideration. The change in the slope of the steady-state 
size distribution suggested by (4.4) is very small to be detected by the Monte Carlo 
simulation. Nevertheless, the values of the parameters r,,, G, E and H used in the 
simulation appearing in figure 8 yield for the constant a;,, 

I a& - 1 .7  for H = lop2, 
%h 

and 
I 

% = 2.9, for H = lop3, 
%h 

(4.5) 

which hold approximately for the constants &, and ash obtained from the results of 
the simulations. 

5. Differential sedimentation 
5.1. Hydrodynamic interactions and computer simulation 

I n  contrast with Brownian diffusion and fluid shearing, differential sedimentation 
induced coagulation involves a physical property of the particles : their density-excess 
ratio (p,-pf) /pf over that of the fluid. Collisions and subsequent coagulation may 
occur when larger or heavier particles overtake smaller ones. 

The presence of a particle moving with velocity u induces a velocity gradient of 
order ur/sz  a t  a distance of s in the surrounding fluid (Batchelor 1976). This velocity 
gradient modifies the trajectory of an approaching particle as if a force dipole were 
located a t  the position of the particle. The collision rate, per unit volume of fluid, 
of particles with sizes rl and rz is given by the rectilinear collision function for 
differential settling (table 1 )  multiplied by the number densities Nl and N z  of the 
particles and the collision efficiency Eds(rl ,  r 2 )  : 

collision rate = $ n I ~ ~ ~ ( r , + r ~ ) ~  I(rf-ri)l N l N 2 E d s ( r l ,  r 2 ) .  (5.1) 

Published work dealing with hydrodynamic interactions of settling particles is in 
connection with gravitational coagulation of water droplets in air. Theoretical 
computations of the collision efficiency are based on several schemes, such as 
assuming Stokes flow, using Oseen’s equations or using the slip-corrected Stokes flow 
equations (in order to account for the breakdown of continuum flow when the 
separation of the particles becomes of the order of the mean free path) giving, 
interestingly, no markedly different results (see Pruppacher & Klett 1978), unless the 
particles are of nearly equal size. Experimental difficulties have not allowed verification 
of the computed-collision efficiencies in the laboratory, mainly because of the critical 
role which molecular or other short-range forces play in coalescing two particles which 
are brought into contact by their relative motion (Tag 1976). Neiburger et al. (1976) 
obtained an analytic expression for theoretical collision efficiencies, computed 
assuming Stokes flow with the slip-flow correction for small particles ( r2  < 30 pm) 
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and approximating the flow fields of larger particles by a superposition technique in 
order to include the effects of inertia : 

Eds = EO+El+E,+E,  

where E,  = 0.95 - (0.7 -0.005r,)4 (7.92 -0.12r2 + 0.00lr,2), 

E ,  = -(1-00.007r,)exp -0.651r2 1 - 2  , [ ( 31 

Ed, is plotted in figure 10 as a function of the particle ratio p = r1/r2 (r, > r l )  for 
different r l .  For fixed relative particle size the collision efficiency Ed, increases with 
increasing particle size since the deflecting hydrodynamic forces become less important 
as particle inertia increases. For the same reason Ed, decreases with p when p -+ 1,  
for fixed r,. For p nearer unity ‘wake ’ capture occurs when the two particles are large 
enough for inertial effects to become appreciable. 

The collision efficiencies given by (5 .2)  are reasonably accurate for water droplets 
in air, but their applicability to other particle systems is questionable. For example, 
double-layer forces are ignored, and inertial effects are more important for water 
droplets in air than for solid particles in water. The slip-flow theory involves the 
assumption that the tangential fluid velocity a t  the surface of the particle is smaller 
than the surface velocity of the particle. This velocity ‘slip’ is related to the local 
stress and the mean free path of the fluid, the factor of proportionality depending 
largely on the properties of the particle surface. Flocculated particles in water may 
have a non-spherical shape and are often porous. Thus, although the collision 
efficiencies in (5 .2)  may have the qualitatively correct dependence on the absolute 
and relative size of the interacting particles, they should be used with caution for 
particle suspensions other than water droplets in air. 

The coagulation process was simulated by imposing on each spherical particle its 
Stokes terminal settling velocity 

valid for timescales greater than the particle viscous relaxation time t, = i r z / u .  All 
particles have the same density and are moving in a ‘control volume’ of variable 
dimensions. Particles reaching the bottom are reintroduced at the top a t  a random 
cross-sectional position. This is necessary in order to prevent the simulation from 
becoming deterministic after a certain time : collisions would cease after each particle 
had swept out its own path through the control volume. Particles move in straight 
pat.hs during the time step At. Equation (5.1) suggests that hydrodynamic interactions 
can be incorporated in the simulation by using an effective collision cross-section 

-4S(r l>  r2) (TI + (5.4) 
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FIGURE 10. Collision efficiencies of sedimenting particles of various sizes (Neiburger et al. 1976). 
In contrast with the method used commonly in cloud physics literature, the collision efficiencies 
are plotted for specific values of r1 rather than r2 ,  since this facilitates their use in the simulations, 
where rl corresponds to the unit particle. 

to check for particle collisions. Notice, however, that  this formulation assumes that 
collisions between particles of equal size do not occur even when their collision 
efficiency is non-zero, thus ignoring wake capture. 

The algorithm was verified using a non-coagulating version of the simulation with 
two particle sizes. The collision rates computed from the simulation were in 
agreement with the prediction of the theoretical model (see figure 18 in $6) .  

An initially monodisperse system of spherical particles was subjected to  gravity 
settling. Weak Brownian diffusion or weak fluid shearing operated at the same time 
to initiate the coagulation process. When uniform shearing motion u = Gx is 
imposed in the presence of settling, the particle crosses the streamlines perpendicular 
to the direction of the shearing during the time step At. The particle displacement 
Y(i) in any time step is then 

(5.5) 

where P(i )  = (Pl(i), P2(i), p3(i)) is the position of the particle i a t  the beginning of the 
time step. It is necessary to take into account the ‘average’ vertical position of the 
particle during any time step At to predict the collision rates correctly. 

5.2. Simulation results 
Figure 11 shows the steady-state size distributions of two initially monodisperse 
systems subjected to weak Brownian motion and weak laminar shearing respectively, 
and to gravity settling (by ‘weak’ we mean that the collision rate due to ‘weak’ 
Brownian motion or ‘weak ’ laminar shear is smaller than the collision rate due to 
differential sedimentation for particles rl and r2 when r2 /r1  2 2 ) .  Hydrodynamic 
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FIGURE 1 1 .  Non-dimensional steady-state particle size distributions for differential sedimentation 
and weak Brownian motion or weak laminar shear; non-interacting suspensions: 0, Kds = 0.94, 
G = 2, E = 5.6 x i,,, = 125, $ = 0.005; +, K,, = 0.94, Do = 0.222, E = 1.4 x 
i,,, = 125, $ = 0.005. 

interactions such as discussed in $33 and 4 are initially ignored but will be discussed 
later. The size distributions are collapsed when non-dimensionalized according to (1.4) 
and plotted against particle volume, non-dimensionalized with the unit particle 
volume. A constant -9 slope line is drawn for comparison. The data shown in figure 
11 are results of the simulation averaged over 1600 time steps. A long-time average 
is needed to reduce the scattering of the data a t  the long tail of the distribution caused 
by the high collision probability of the large particles. 

The next figure illustrates how weak Brownian motion modifies the size distribution 
a t  the small size range. The steady-state size distribution of the population of particles 
subjected to weak Brownian motion and gravity settling (figure 11) is allowed to 
evolve in the presence of settling only. The steady-state size distribution attained and 
averaged over 100 time steps is compared with the initial one in figure 12. The 
numerical results are statistically identical in the largest part of the size spectrum. 
When only differential settling operates as a volume-transferring mechanism through 
the size spectrum, the shape of the size distribution near the small-size range reflects 
the ineffectiveness of differential settling to coagulate particles of similar size. 
Particles of equal size subjected to gravity settling do not collide. However, since the 
flux of particle volume into the size range from coagulation of particles smaller than 
vo is represented in the simulation by a constant addition of unit particles, it is 
apparent that this scheme cannot represent properly the collisions of particles larger 
than v,, with particles smaller than v,, ; hence the awkwardly high number of unit 
particles in the size distribution shown in figure 12. 

Figures 13 and 14 show two states in the development of the size distribution of 
an initially monodisperse system of particles undergoing Brownian diffusion and 
settling. The relative strength of the two coagulation mechanisms can be assessed 
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FIGURE 13. Non-dimensional size distribution for differential sedimentation and Brownian motion 
at 1200 time steps; Kds = 0.19, Do = 0.222, Ninitia, = 200, E = 5.6 x i,,, = 125. 

from the ratio of their respective rectilinear collision functions PB and Pds (see 
table 1) 

where q is the particle radius non-dimensionalized with the radius r,, of the unit 
particle, and Do is the diffusivity of the unit particle. The transition in dominance 
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of the two mechanisms in the particle system shown in figures 13 and 14 is a t  
21/21, = 24: the collision rates of particles of volume 24v, with particles of volume v, 
due to Brownian motion and differential settling are equal. Figure 13 shows the 
particle size distribution after 1200 time steps, only about 200 time steps before a 
steady state is attained. The -; and -7 slopes are clearly distinguishable, but the 
transition point is shifted from v/v, = 24, indicating that the influence of the large 
particles undergoing differential settling induced coagulation tends to propagate to 
smaller size ranges in the size spectrum. The statistically steady state attained is 
shown in figure 14. The data points shown are averaged over 3000 time steps after 
the first large particle was lost from the 'control' volume. The dominance of 
differential settling is evident. 

So far hydrodynamic interactions have been ignored. We turn now to more realistic 
particle systems in which hydrodynamic forces between two approaching particles 
exist. The time evolution of the normalized size distribution of an initially mono- 
disperse suspension subjected to gravity settling and weak Brownian diffusion is 
shown in figure 15. The data of five simulation runs, for a value of ro corresponding 
to an actual particle radius of 40 pm, are averaged and smoothed to give the 
curves shown. For a unit particle with radius 40 pm and a density-excess ratio 
(pp-pf) /pf  = 0.9, 1 s of real time corresponds to about 376 time steps in the simu- 
lation (considering the dimensionless group Kds tr,). The development pattern is 
strikingly similar to the Brownian and shear systems, but the change in the number 
of unit particles is more significant. This indicates that large particles formed at  
progressively later times influence significantly the particle-size distribution a t  the 
small end of the spectrum. 

The functional dependence of the effective collision cross-section on r1 (figure 10) 
suggests that the shape of the size distribution will depend on the absolute size of 
the particles. This is illustrated in figure 16, where the normalized size distributions 
of two particle systems differing in the size of the unit particles are compared. The 
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FIGURE 15. Evolution of the normalized size distribution for differential sedimentation ; 

Kds = 0.94, Do = 0.222, E = 5.6 x i,,, = 125. 

two sets of data correspond to actual unit particle sizes of 20 and 40 pm, all other 
parameters being equal. The plotted points are numerical data averaged over 1000 
time steps and normalized as suggested by (1.4). Weak Brownian diffusion is allowed 
to operate in order to smooth the size distribution a t  the smaller particle-size range. 
The smaller the size of the unit particles, the steeper the final steady-state size 
distribution becomes. In figure 17 two 'interacting' populations of particles with 
r0 = 20 and 80 pm are compared with a 'non-interacting' system. Note that for the 
latter the absolute size of the particles is irrelevant. There is an accumulation of 
particles in the size distribution with ro = 80 pm near v/vo = 20, where the cutoff in 
the respective efficiency curve occurs (see figure 10). From figures 16 and 17 we 
conclude that the slope of the size distribution of a coagulating system of suspended 
particles subjected to differential settling depends on the size of the particles. When 
the radius of the smallest particles involved in the simulation is less than about 40 pm, 
the steady-state size distribution has a slope steeper than -?; in simulations with 
larger ro the size spectrum is flatter. 

In simulations performed with ro less than 15 pm a steady-state size distribution 
was not attained, unless weak Brownian motion operated. Irrespective of the shape 
of the initial particle spectrum, the number of unit particles in the control volume 
constantly increased when only differential sedimentation-induced collisions were 
allowed to occur. This is due to the shape of the efficiency curve for rl less than about 
15 pm; collisions simply do not occur for particles close in size and widely different 
in size. However, for particles less than 15 pm shearing motion is more effective in 
inducing collisions (Hunt 1982). 

Simulations performed for a non-interacting system of particles gave 

ads = 0.45 & 0.02 

for the dimensionless constant ads in (1.4). Hydrodynamic interactions between the 
approaching particles steepen or flatten the steady-state size distribution, depending 
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FIGURE 16. Comparison of the steady-state normalized size distribution for differential sedimentation 
and weak Brownian motion when different collision efficiencies are used ; Kds = 0.94, Do = 0.222, 
E = 5.6 x lop5, i,,, = 125: 0, when ro corresponds to an actual radius of 20 pm, 4 = 0.004; x , 
when ro corresponds to an actual radius of 40 pm, c$ = 0.005. 
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FIGURE 17. Comparison of the steady-statenormalized size distribution for differential sedimentation 
and weak Brownian motion for a non-interacting system and two realistic ones; Kds = 0.94, 
Do = 0.222, E = 5.6 x i,,, = 125: x , non-interacting, 4 = 0.010; 0, realistic with ro 
corresponding to an actual radius of 20 pm, 4 = 0.004; A, realistic with ro corresponding to an 
actual radius of 80 pm, 9 = 0.005. 
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on the particle-size range considered. However, computational cost effectively 
prohibited the direct simulation of a more extended particle-size range. The simul- 
ations performed therefore involve overlapping sections of the size spectrum. The 
numerical results indicate Chat the size distribution becomes steeper the smaller the 
size of the particles considered; for unit particles smaller than about 15 pm the 
computer model suggests that no steady state can exist as a result of the shape of 
the efficiency curve for such particles. Thus no power-law expression of the form of 
(1.4) with a unique exponent can represent the particle-size distribution in the size 
range where differential settling dominates. Unlike shear-induced coagulation (see 
§4), hydrodynamic interactions cannot be incorporated solely in the dimensionless 
coefficient ads. 

6. Conclusions and discussion 
The direct simulation of the physical processes of particle collision and coalescence 

was undertaken in order to investigate Friedlander’s (1960a, b )  and Hunt’s (1982) 
theory regarding the existence of a quasi-stationary particle-size distribution in 
aerosols and hydrosols. Observations in the atmosphere (Friedlander 1960a, b )  and 
in oceanic waters and wastewater sludges (Hunt 1982) and Hunt’s experiments partly 
support the theory. The numerical simulations of Part 1 showed that, provided 
hydrodynamic and other interparticle forces are ignored, a population of coagulating 
particles can reach a state of dynamic equilibrium sustained by the flux of mass 
through the size space, when the collision mechanism is Brownian motion, simple 
shear or isotropic turbulent shear. The steady-state size distributions obtained in Part 
1 were in agreement with Hunt’s dimensional results. 

This study re-examined the kinetics of a population of coagulating particles 
accounting for the influence of interparticle forces on the collision rate. Such forces 
can arise from the disturbance the presence of the particle causes in the fluid 
(hydrodynamic forces), from the cloud of ions that surround an electrically charged 
particle (double-layer forces), or they can be of molecular origin (van der Waals 
forces). These forces modify the trajectory of two approaching particles, increasing 
or decreasing the probability of collision and subsequent coalescence. The significance 
of these interactions for the validity of the theory lies in the functional dependence 
of the collision efficiency - which multiplies the rectilinear collision rate and 
incorporates the effect of all interparticle forces on the collision process - on the 
relative size of the interacting particles. For underlying Hunt’s dimensional arguments 
is the notion that the coagulation process is mainly ‘local’ in size space. 

The analytic estimates for the rectilinear collision function for Brownian diffusion, 
fluid shear and differential sedimentation induced coagulation were reproduced in this 
study using the non-coagulating version of the model. This is illustrated in figure 18, 
where the computed number of collisions, for several collision mechanisms, is plotted 
against the number of collisions predicted by the theoretical models. The data points 
shown are results from simulations involving a variety of different situations, such 
as monodisperse systems or suspensions with two particle sizes and systems with 
different densities and/or with different values of the dimensional parameters KB, 
G and Kds (which represent the strength of the collision mechanisms). 

For Brownian-motion-induced coagulation, collision efficiencies were computed for 
two spherical particles of different size, assuming Stokes flow and taking into account 
the attractive van der Waals and the double-layer forces. The latter are assumed 
dispersive, since suspended particles in natural waters usually carry a negative 



408 

500 

400 
2 

B s 
% 300 

B 
E 

0 
.d 
u) 

c 

S 

z 200 
!2 s 

I00 

0 

I .  A .  Valioulis, E.  J .  List and H .  J .  Pearson 

A 

A 

A 

X 
X 

X 

*r 

&*’ 

100 200 300 400 500 
Theoretical number of collisions 

FIGURE 18. Comparison of theoretical and computed collision rates : x , laminar shear; 0, Brownian 
motion; A, differential sedimentation; +, Brownian motion and laminar shear. 

charge. The results suggest that  double-layer electrostatic forces determine the onset 
of coagulation, but, once collisions occur, the coagulation rate depends only on the 
hydrodynamic and the van der Waals forces. The onset of coagulation is abrupt, and 
so a quantitative criterion of stability was derived. The combined actions of 
hydrodynamic and van der Waals forces reduces the collision rate of all particle pairs, 
but it decreases the collision rate more between particles of similar size. As a result, 
contrary to the ‘non-interacting ’ system of Part 1 ,  the simulations performed here 
showed that the size range covered influences the final steady-state size distribution. 
I n  Brownian diffusion the rectilinear collision rate increases with the ratio r2/r1 
(r2 > rl) of the interacting particles; for the ‘non-interacting’ system of Part 1 this 
effect is counterbalanced by the relatively small number of large particles. 
Hydrodynamic and van der Waals forces tend to reduce the collision efficiency 
relatively more between particles of equal size. Collisions between particles widely 
different in size therefore become important in determining the evolution of the size 
distribution. The coagulation process is no longer ‘local’ in size space, external 
parameters like the particle size range do become important and so dimensional 
analysis cannot be used to describe the development of the size distribution. Hunt’s 
(1982) experiments and some of the simulations performed in this study produced 
size distributions having a slope close to the characteristic -$ slope suggested by 
dimensional analysis. However, the detailed investigation of the collision process 
performed by the computer ‘ experiment ’ suggests that quantitative predictions 
cannot be made. 

Adler (1981) computed the collision efficiency for two unequal spheres in simple 
shear flow under the action of van der Waals attractive forces. For particles very 
different in size the collision rate is negligible. As a result, the dynamic equilibrium 
obtained in the simulated population of coagulating particles does not depend on the 
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size range considered. The power-law expression for the steady-state size distribution 
suggested by dimensional analysis is verified in the simulations, but the level of the 
equilibrium size distribution depends on the relative strength of the shear and the 
van der Waals energy of attraction. 

Simulations for turbulence-induced coagulation were not performed. If interparticle 
forces are ignored, the analytic estimates for the collision functions suggest that, for 
particles much smaller than the Kolmogorov microscale, isotropic turbulent shear 
is equivalent in coagulating power to a rectilinear laminar shear of magnitude 1.72 
times the characteristic turbulent strain rate (E/v):. Adler’s (1981) collision efficiencies 
than can be used for isotropic turbulent shear induced coagulation. The equivalence 
with the simple shear is apparent and the same conclusions hold. 

Simulations with a non-interacting sedimenting population of particles gave 
steady-state size distributions in agreement with the theory. Published collision 
efficiencies derived from theoretical computations assuming Stokes’ flow and corrected 
to be consistent with experimental results (Neiburger et a2. 1976) depend both on the 
relative and the absolute size of the interacting particles. For large particles (larger 
than about 80pm) the collision efficiency decreases as the particles become of 
increasingly different size ; for smaller particles collisions between particles both 
similar and widely different in size are unlikely. Equilibrium size distributions were 
obtained only in simulations where the smallest particle in suspension was larger 
than about 15 pm. The steady-state size distributions attained by the coagulating 
particles had a slope varying about -?, which is the slope predicted by dimensional 
arguments, and depending on the size range considered. Measured size distributions 
or particles in aerosols (Pruppacher & Klett 1978, p. 212) and in sewage sludges (Faisst 
1976) in the size range 10-100 pm have a slope varying about -9. The larger slope 
of the size distribution has been attributed erroneously in the past to a ‘settling’ 
dominated regime where particles settle out of the system. Settling, however, 
represents a spatially non-homogeneous mass flux (or volume flux, if the particle 
density is assumed to remain constant after coalescence) which cannot be sustained 
unless another mechanism operates simultaneously to input mass into the volume 
of fluid under consideration. The results of the computer simulation help to ex- 
plain both the steeper slopes of the particle size distributions observed and their 
variability. 

I n  conclusion, the results of the simulations suggest that a dynamic equilibrium, 
sustained by the flux of mass through the size spectrum, exists, but a power-law 
expression of the form predicted by Hunt and Friedlander can be expected only in 
the shear-induced coagulation regime. The limited size range covered by the 
simulations did not allow confirmation or otherwise of the hypothesis that different 
collision mechanisms act independently over separate regions of the size spectrum. 
The functional dependence of the collision efficiency on the relative size of the 
sedimenting particles suggest that differential-settling-induced coagulation does not 
influence the small end of the size spectrum; and Brownian motion is too weak as 
a coagulating mechanism to affect large particles. To elucidate this point further, 
information is needed on the influence of hydrodynamic, van der Waals’ and 
electrostatic forces on the collision probability of two particles when two or more of 
the collision mechanisms examined here act simultaneously. 

The simulation described here can also be used to give insight into the spatial 
fluctuations in particle number and size which occur in a real system. Such 
information cannot be obtained from the numerical solution of the general dynamic 
equation, which is a deterministic phenomenological equation and describes the 
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behaviour of the suspension averaged over some volume of fluid. Furthermore, there 
is a good reason t,o question the suitability of the general dynamic equation to 
describe the evolution of a coagulating suspension. The general dynamic equation 
assumes a completely mixed system and ignores correlations between the particles 
induced by the coagulation process. For example, as particles of a given size in a region 
of fluid coagulate, a local reduction in their number occurs, so fewer particles of this 
size remain for further coalescence. If the suspension of particles is poorly mixed or 
the number of particles is small, then the average behaviour of the suspension 
predicted by the general dynamic equation may not represent the true average of 
the local coalescence processes. Gillespie (1972) and Bayewitz et al. (1974) developed 
the full stochastic equation of the coalescence process and showed that the solution 
obtained from the general dynamic equation approaches the true stlochastic average 
provided that certain correlations are neglected and that coagulation between 
particles of equal size is unimportant. The computer model developed in Part  1 is 
a direct simulation of the processes of collision and coalescence of particles, and, as 
such, it accounts for all correlations between particle properties. It does not only 
predict the average spectrum, but i t  also gives information on higher-order moments 
of properties of the suspension. This is important since the size distribution predicted 
by the general dynamic equation will be valid when the standard deviation of the 
various properties of the suspension is a small fraction of the mean. The Monte Carlo 
simulation thus provides a unique tool to evaluate the validity of the general dynamic 
equation to describe the dynamics of a coagulating population of particles and such 
work is in progress. The small number of particles that  are employed in the simulation 
restricts its application to small regions of the fluid. However, since the coagulation 
process is mainly local, this may not be a serious defect. Ensemble averages over 
repeated runs can then represent the true stochastic average of the coagulation 
process in a larger fluid volume. 

The work described herein is taken, in most part, from the Ph.D thesis of 
I. A. Valioulis submitted to the California Institute of Technology in March 1983. 
The authors gratefully acknowledge the support of the Office of Ocean Assess- 
ment NOAA (NA80RA-DO-0054 and NA82RAD00004) and Sea Grant NOAA 
(NA 80RAA-D-00120). 
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